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the use of gas phase data to explain electrochemical phenom­
ena must be done prudently, it is often successful,26,7 and in 
this case the pe results demand that the electronic states of the 
electrochemical intermediates be considered. 

The present results nicely compliment those of Gooden and 
Brauman, although they do reveal complications concerning 
the nature of the electronic state and structure of the parent 
ion which is initially formed by electron impact on butyro-
phenone. The electrochemical results suggest that the observed 
3-eV band in the kinetic spectrum of butyrophenone radical 
cation might arise from a transition originating from the y 
radical cation analogous to no7 of Scheme I. 
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Photochemical Addition of Dienes 
to A'-Alkylphthalimides 

Sir: 

The photochemical rearrangement of ./V-alkylphthalimides 
to benzazepinediones 1 —• 4 via a type II process has been the 
subject of numerous recent studies.1-14 The reaction has been 
shown to be quite general, occurring with O,3'4 S,5'6 N,7-15 and 
aromatic moieties2'10'1' incorporated in the TV-alkyl substitu­
ent. Despite the large amount of work on the scope of these 
reactions there is little mechanistic information available with 
the exception of reports1'5'13,14 that some of the reactions occur 
via the triplet state since they are quenched by dienes. 

When we conducted quenching studies on phthalimides la, 
our results indicated that normal photochemical quenching 
was not occurring but that the phthalimides were efficiently 
reacting with the c/s-piperylene quencher. We investigated this 
reaction using 7V-methylphthalimide (5) and butadiene in 
order to avoid unnecessary complications from competition 
with type II processes (i.e., 1 -»• 4) and isomer formation. A 
1% solution of 5 (3 g) in 2:1 butadiene-acetonitrile was irra-

I a R - H, R i = CH3 

l b R « C H 3 , R 1 = H 

diated for 6.5 h with a Hanovia 450-W medium-pressure lamp 
through quartz. NMR analysis of the semisolid residue from 
solvent evaporation indicated that 69% of 5 had been converted 
to product. Silica gel chromatography afforded a 93% yield 
of product16 which was shown to consist of a mixture of anti-
(6) and syn-3,4-benzo-6,7-dihydro-6-ethylidene-l-methyl-
azepine-2,5-dione (7). The structure of the major product fol­
lows from chemical and spectroscopic evidence. The 1H NMR 
spectrum (CDCl3) of the major product (6, mp 109-111 0C), 
after purification by preparative TLC and recrystallization, 
showed <5 2.05 (d, 3 H, J = 7 Hz), 3.15 (s, 3 H), 4.25 (s, 2 H), 
7.1 (q, 1 H, J = 7 Hz), 7.40-8.00 (m, 4 H); IR (CCl4) 1680, 
1650 cm-';m/e 215 (10). The 1H NMR of the minor product 
7 showed 8 2.3 (d, 3 H, J = 7 Hz), 3.20 (s, 3 H), 4.05 (s, 2 H), 
6.5 (q, 1 H, / = 7 Hz), 7.4-8.0 (m, 4 H). 

SMO 

The anti orientation of the vinyl methyl group in 6 follows 
from its chemical shift (5 2.05) when compared with that of 
the vinyl methyl group in the syn isomer (5 2.30) which is 
shifted downfield by the c/s-carbonyl group. A complementary 
shift is seen with the vinyl proton in 6 which is shifted downfield 
by 0.6 ppm from its position in 7.17 

Confirmatory evidence for the structure of 6 and 7 was ob­
tained by hydrogenation of the product mixture at atmospheric 
pressure in ethanol over 5% Pd/C to give the ethyl derivative 
8: NMR(CDCl3)S 1.0 (t, 3 H, J = 7 Hz), 1.3-1.8 (m, 2 H), 
2.7-3.1 (m, 1 H), 3.2 (s, 3 H), 3.5-3.8 (m, 2 H), 7.3 -7.9 (m, 
4 H); IR (CCl4) 1690, 1650 cm"1; m/e 217 (26). Irradiation 
of this material in acetonitrile cleanly converted it to the parent 
3,4-benzo-6,7-dehydro-l-methylazepine-2,5-dione (9): NMR 
(CDCl3) 5 2.8-3.1 (m, 2 H), 3.20 (s, 3 H), 3.6-3.8 (m, 2 H), 
7.4-7.9 (m, 4 H); IR (CCl4) 1695,1655 cm"1; m/e 189 (1954). 
The type II cleavage of the ethyl group6 clearly establishes the 
position of the substituent as a to the carbonyl. No evidence 
for any 7-substituted products was obtained. 

Possible mechanisms for this novel reaction,18 formally a 
[w2 + a2] photochemical cycloaddition, must explain the ob­
served regiospecificity; i.e., the diene always adds with its 
terminal carbon attached to nitrogen. We suggest the sequence 
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shown, which meets these general criteria, involving diene 
addition to give dipolar biradical 10, subsequent closure to 
azetedine 11, and opening to 12. An alternative mechanism 
would involve a cleavage to biradical 13 which could add diene 
to afford 12 directly. However, if rotation around the C-C(O) 
bond in 13 is competitive with reclosure to 5, a reasonable ex­
pectation in view of the fact that diene addition must compete 
with reclosure, we would expect to see the formation of the 
isomeric imine 14 in the absence of diene. Irradiation of 5 in 
pure acetonitrile or tert-butyl alcohol gave only unreacted 
5. 

The addition reaction occurs with several other dienes with 
comparable efficiency. Thus, irradiation of 5 in the presence 
of isoprene affords a 45:55 mixture of 15a and 16 in 49% iso-

16 
1 5 a , R = H 

1 5 b , R - CH 

lated yield. The 1H NMR spectrum of 15a showed 5 1.45 (s, 
3 H), 3.2 (s, 3 H), 3.30 and 3.83 (AB pattern, 7 = 1 4 Hz), 
5.0-5.6 (m, 3 H), 7.3-7.9 (m, 4 H); IR (CCl4) 1698, 1655 
cm-1; m/e 229 (9). The spectra of 16 showed 5 2.15 (s, 3 H), 
2.35 (s, 3 H), 3.25 (s, 3 H), 4.30 (s, 2 H), 7.5-8.0 (m, 4 H); IR 
(CCl4) 1670, 1655 cm-1; m/e 229 (100). Similarly, 2,3-di-
methylbutadiene gave a 50% isolated yield of 15b:20 5 1.4 (s, 
3 H). 1.7 (s, 3 H), 3.18 (s, 3 H), 3.3 and 4.0 (AB pattern, J = 
15 Hz), 4.7-4.9 (m, 2 H), 7.2-7.7 (m, 4 H); IR (CCl4) 1695, 
1655 cm-1; m/e 243 (9). The photoaddition occurs with 1,3-
pentadiene to give the expected products from initial addition 
of the N atom in 5 to the 1 and 4 positions in the diene.21 

However, we were unable to detect any product formation 
when 5 was irradiated in the presence of either cyclopentadiene 
or 2,5-dimethyl-2,4-hexadiene.22 Experiments with isoprene 
and phthalimide and N-phenylphthalimide also afforded no 
product suggesting that the reaction is sensitive to electronic 
effects. Research on the scope and mechanism of these reac­
tions is continuing. 
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Chemiluminescence Accompanying 
the Decomposition of 4a-Flavin Alkyl Peroxide. 
Model Studies of Bacterial Luciferase 

Sir: 

Flavoenzyme external monooxygenases, in the reduced state 
(Enz-F1H2), combine with molecular oxygen and substrate (S) 
to yield enzyme-bound oxidized flavin (EnZ-Fl0x), water, and 
oxygenated substrate (eq I).1 The oxidation of S involves the 

NAD+ NADH 

I I 
EnZ-FlH2 + O2 + S —»• EnZ-Fl0x + H2O + SO (1) 

stepwise processes of combination of enzyme-bound dihy-
droflavin (EnZ-FlH2) with oxygen to provide an oxygenated 
flavin species (EnZ-FlH2O2) which then reacts with the bound 
substrate.1 It has been suggested that the FlH2O2 moiety 
possesses a 4a-hydroperoxylfavin structure (4a-FlHOOH).''2 

We have recently reported the synthesis and characterization 
of 4a-FlC2H5OOH and established that its spectrum is almost 
superimposable upon that of EnZ-FlH2O2 prepared from Be-
neckea harveyi luciferase.3 Further, we have established that 
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